
8.2 Greatest Common Divisor and Least Common Multiple
⤷ Bézout's Identity(e.g.)

Example: Calculate gcd(119,544)and find the values of x and y that 
satisfy the equation 119x+544y=gcd(119,544) through the backward 
substitution process.

Solve: ①Apply the Euclidean algorithm.

We begin by performing the division steps of the Euclidean algorithm:

544=119×4+68 

119=68×1+51

68=51×1+17 

51=17×3+0



8.2 Greatest Common Divisor and Least Common Multiple
⤷ Bézout's Identity(e.g.)

Solve: ②Use backward substitution to find x and y.
Now, we work backwards to express 17 as a linear combination of 119 
and 544. From the last division:

119x+544y=gcd(119,544)=17

17=68−51×1 

17=68−(119−68×1)×1 

17=68×2−119 

17=(544−119×4)×2−119 

17=544×2−119×8−119

17=544×2−119×9 

The GCD of 119 and 544 is 17, which can be expressed as a linear 
combination: 119×(−9) + 544×2 = 17



8.2 Greatest Common Divisor and Least Common Multiple
⤷ The Necessary and Sufficient Condition for Coprimality

 Two integers a and b are coprime if gcd(a,b)=1.

 A set of integers a1, a2 ,…, an is pairwise coprime if every pair of 
distinct elements is coprime, i.e., gcd(ai , aj)=1 for all i ≠ j .

 For example, 8 and 15 are coprime, while 8 and 12 are not 
coprime.The numbers 4, 9, 11, and 35 are pairwise coprime.

 Theorem 8.10: The necessary and sufficient condition for two 
integers a and b to be coprime is that there exist integers x and y
such that xa+yb=1.



8.2 Greatest Common Divisor and Least Common Multiple
⤷ The Necessary and Sufficient Condition for Coprimality

Necessity: If integers a and b are coprime, then there exist integers 
x and y such that the equation ax + by = 1 holds.

Proof:

①By the definition of coprimeness, gcd(a,b)=1.

②By Bézout's Theorem, since gcd(a,b)=1, there must exist integers 
x and y such the ax+by=gcd(a,b).

③Substituting  gcd(a,b)=1, we get ax+by=1, thus finding the values 
of x and y that satisfy the condition.

Sufficiency: Proving that the equation ax + by = 1 holds is a 
sufficient condition for a and b to be coprime.



8.2 Greatest Common Divisor and Least Common Multiple
⤷ The Necessary and Sufficient Condition for Coprimality

Proof: 
①Suppose there exist integers x and y such that the equation ax + 

by=1 holds, meaning a and b can be expressed as a linear 
combination to generate the smallest positive integer 1.

②Let d be a common divisor of a and b , so a=d⋅ m and b=d⋅ n, where 
m and n are integers. The equation ax + by=1 can be rewritten as 
d⋅(mx+ny)=1.

③Since only 1 multiplied by 1 results in 1 among positive integers, d
must be 1.

④Therefore, since a and b have no common divisors greater than 1, 
we have gcd(a,b)=1, and by the definition of coprimeness, a and b
are coprime.



8.2 Greatest Common Divisor and Least Common Multiple
⤷ Coprime Divisibility Transfer Theorem

Theorem 8.11: Let a|c, b|c, a and b be coprime. Then, ab|c.

Proof:

①By the necessary and sufficient condition for coprimeness, 
there exist integers x and y such tha xa+yb=1. 

②Multiplying both sides by c, we get cxa+cyb=c. Since a|xa and
b|c, we have ab|cxa. 

③Similarly, since b|yb and a|c, we have ab|cyb. Thus, we have 
ab|cxa+cyb, which simplifies to ab|c.



8.2 Greatest Common Divisor and Least Common Multiple
• Brief summary

Objective :

Key Concepts ：
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Chapter 8 Elementary Number Theory

8.1 Prime Numbers

8.2 Greatest Common Divisor and Least Common Multiple

8.3 Congruence

8.4 Linear Congruence Equations and the Chinese      
Remainder Theorem

8.5 Euler's Theorem and Fermat's Little Theorem



8.3 Congruence

Congruence

Modular Arithmetic

Equivalence Class modulo m



8.3 Congruence
⤷ Congruent modulo m

Definition 8.5 : Let m be a positive integer, and a and b be 
integers.

• If m∣(a−b), then a is said to be congruent to b modulo m, or a is 
congruent to b modulo m, denoted as a≡b (mod m).

• If a is not congruent to b modulo m, we write a ≢b(mod m).

The necessary and sufficient conditions for a≡b (mod m). :

(1) a mod m = b mod m.

(2) a≡b(mod m) if and only if a−b is a multiple of m, i.e., a=b+km, 
where k is an integer.

 Example：5≡17(mod 6)  , 264≡249(mod 5) , 24 ≢ 16(mod 6) .



8.3 Congruence
⤷ Properties of Congruence Operations

Congruence modulo m satisfies the properties of an equivalence relation. 
That is, for all integers a,b,c∈Z, the following hold:
① Reflexivity: a≡a(mod m)
② Transitivity: a≡b(mod m)∧b≡c(mod m) ⇒ a≡c(mod m).
③ Symmetry: a≡b(mod m) ⇒ b≡a(mod m).
• Shorthand notation for the equivalence relation modulo m:

a1≡a2≡…≡ak (mod m). 
Closure of Algebraic Operations under Congruence Modulo m
If a≡b(mod m), c≡d(mod m),then:
① a±c≡b±d(mod m) (Additive and subtractive property)
②ac≡bd(mod m) (Multiplicative property)
③ak≡bk(mod m) , where k is a non-negative integer (Exponentiation 

property)
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